

Q7	In the following question a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. A) Both A and R are true and R is the correct explanation of A. B) Both A and R are true but R is not the correct explanation of A. C) A is true but R is false. D) A is false but R is true.	1
	Assertion (A): If A and B are symmetric matrices then $\mathrm{AB}-\mathrm{BA}$ is a skew symmetric matrix. Reason (R): For a skew symmetric matrix $\mathrm{A}=\left[a_{i j}\right], a_{i j}=0$ if $i=j$.	
	SECTION B	
Q8.	Solve for x and y using Cramer's rule: $3 x-4 y=0 \quad 2 x-3 y=-1$. OR If $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 1 & 3\end{array}\right)$ evaluate adj A.	2
Q9.	A stationery company manufactures ' x ' units of pen in a given time. If the cost of raw material is square of the pens produced, cost of transportation is twice the number of pens produced and the property tax costs ₹ 5000 , then, (i) find the cost function $\mathrm{C}(\mathrm{x})$. (ii) find the marginal cost of producing 50 pens.	2
Q10.	Express the matrix $A=\left(\begin{array}{ccc}4 & -2 & 0 \\ 8 & 0 & -3 \\ 2 & 2 & 1\end{array}\right)$ as sum of a symmetric matrix and a skew symmetric matrix	2
	SECTION C	
Q11.	Two numbers are selected at random without replacement from the set of natural numbers $1,2,3,4$ and 5 . If X denotes the greater number obtained, i) prepare the probability distribution of random variable X ii) find the mathematical expectation of X .	3
Q12.	If $x \sqrt{1+y}+y \sqrt{1+x}=0$, then prove that $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$ OR If $x^{2} y^{3}=(x+y)^{5}$ prove that $\frac{d y}{d x}=\frac{y}{x}$ and $\frac{d^{2} y}{d x^{2}}=0$	3

Q13.	If the probability that an individual suffers a bad reaction from a injection of a given serum is 0.001 . Determine the probability that out of 2000 individuals i) exactly 3 individuals will suffer from a bad reaction. ii) more than 2 individuals will suffer from a bad reaction. (Use $e^{-2}=0.1353$)				3
	SECTION D Case study-based questions				
Q14	In an election, a political group hired a public relation firm to promote their candidate in three ways: telephone, house calls and letters. The cost per contact is given as follows: Telephone ₹ 0.10 , House call ₹ 1.00 and letter ₹ 2.00 . If the number of contacts made in two cities X and Y are given below:				4
	a) If A is a 2×3 matrix and B is a 3×1, what is the order of matrix AB ? b) What is the total amount spent on telephone calls by the political group in both the cities together? c) Using matrices find the total amount spent in each cities X and Y . OR Find A if $A\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 1 \\ 6 & 3\end{array}\right]$.				
Q15	The test scores of a university entrance test appeared by 3000 students are normally distributed with mean 200 marks and standard deviation 20 marks. Based on the above information answer the following:				4
	a) Find the Z score of the mark 100 . b) If Hari scored 180 marks what can you conclude about his performance compared to his batchmates? c) Find out the number of students expected to score above 220. OR c) If 5% of the total students are qualified for the admission, find the minimum marks required to get the admission. [Given: $\mathrm{P}(\mathrm{Z}<-1)=0.1587 \& P(Z \leq 1.65=0.95$]				

